Weizmann’s study sheds new light on a promising antidepressant

Weizmann’s study sheds new light on a promising antidepressant

By: IPP Bureau

Last updated : June 30, 2022 12:07 pm



A newly revealed mechanism by Weizmann Institute of Science of ketamine’s action on potassium channels in neurons may lead to improved therapies for depression


Ketamine, a well-known anesthetic used in smaller doses as a party drug, was hailed as a “new hope for depression” in a Time magazine cover story in 2017. Two years later, the arrival of the first ketamine-based antidepressant – the nasal spray esketamine, made by Johnson & Johnson – was applauded as the most exciting development in the treatment of mood disorders in decades. Yet the U.S. Food and Drug Administration still limits the spray’s use. It is mainly given to depressed patients who have not been helped by other therapies – in part, because the new drug’s mechanism of action is insufficiently understood, leading to concerns over its safety.

Today, a study published in Neuron reveals new details about how ketamine works, paving the way toward the development of safe, effective treatments for depression. The research was conducted at the Weizmann Institute of Science in Rehovot, Israel, and at the Max Planck Institute of Psychiatry in Munich, Germany, in collaboration with the Helmholtz Zentrum, Munich.

When scientists tried to clarify ketamine’s mechanism of action in previous studies, they examined its impact on gene expression in brain tissues, but not in individual brain cells. This approach can miss crucial differences between different cell types. Recent technological advances, however, have made it possible to assess gene expression at an unprecedented level of resolution: that of the single cell. These technologies were employed in the new study, conducted under the guidance of Prof. Alon Chen, former managing director of the Max Planck Institute of Psychiatry and current president of the Weizmann Institute of Science.

In this study, researchers led by Dr. Juan Pablo Lopez mapped out gene expression in thousands of individual neurons in the brains of mice that had been given a dose of ketamine. These neurons belong to networks that convey their signals by means of the neurotransmitter glutamate. Ketamine had been known since the 1990s to produce its effects by acting on such neurons – this in contrast to older antidepressants, which mainly affect neurons influenced by serotonin. But since ketamine’s effect persists long after it leaves the body, its action could not be explained by mere blockage of glutamate receptors on the surfaces of neurons. “We wanted to clarify the molecular cascade that is triggered by ketamine, leading to its sustained antidepressant effects,” Lopez says.

To this end, the scientists focused on the ventral hippocampus, a brain region that in previous studies had been associated with the antidepressant effects of ketamine. After mapping out gene expression in cells from this area of the mouse brain, the researchers identified a subpopulation of neurons with a characteristic genetic signature. Ketamine had increased these neurons’ expression of a gene called Kcnq2, which encodes a potassium channel – that is, a tunnel that opens up in the cell membrane, enabling the passage of potassium ions. Potassium channels play a central role in the life of neurons, maintaining their stability and preventing their excessive firing. In a series of elaborate experiments on the molecular and cellular levels, which included electrophysiological, pharmacological, behavioral and functional studies, the scientists confirmed their major finding: Ketamine exerts its lasting antidepressant effect by enhancing the Kcnq2 potassium channels in a certain subtype of glutamate-sensitive neurons.

“In the past, other researchers used whole tissue samples, which are composed of different cell types, so ketamine’s effects on specific cell types were averaged out,” Lopez explains.

Ketamine Prof. Alon Chen Max Planck Institute of Psychiatry Weizmann Institute of Science Dr. Juan Pablo Lopez

First Published : June 30, 2022 12:00 am