3Brain AG's Accura-3D microchip, enters the market
Digitisation

3Brain AG's Accura-3D microchip, enters the market

3D CMOS chip for connecting electroactive tissues and organoids to software

  • By IPP Bureau | August 24, 2022

3Brain AG in collaboration with Swiss experts in precision manufacturing from CSEM has announced an exciting 3D microchip for their brain-on-chip portfolio. This first-in-class cell-electronic interface technology will allow scientists to study the complexity of 3D cellular networks at unrivaled scale and precision – and to gain novel mechanistic insights into the inner workings of the most complex structure in the universe, the human brain.

Understanding how organs form and how their cells behave is essential to finding the causes and treatment for developmental disorders, as well as understanding certain diseases. However, studying most organs in live animals or humans is technically difficult, expensive, and invasive.

Currently, cell-electronic interfaces like patch clamp and, more recently, high-density multi-electrode arrays are limited to 2D and suffer many limitations when it comes to measuring 3D model systems like brain organoids or tissue preparation because they cannot reach the necessary proximity to physiologically relevant cells.

This first-in-class 3D CMOS microchip (named Accura-3D) is equipped with sensory gold-electrodes mounted on thousands of biopolymer-covered microneedles. Accura-3D enables the investigation of 3D cellular networks at unprecedented depths and resolution, which will open up unrivaled access to the complexities of biological systems. With only half the diameter of human hair, biopolymer-covered microneedles bypass damaged and surface cell layers of 3D model systems without disrupting the overall cytoarchitecture, thus retaining full biological integrity.

"What we really want is to empower researchers to ask new and daring biological questions that have so far been impossible to investigate," says Mauro Gandolfo, CEO and co-founder of 3Brain AG.

"Our cell-electronic interfaces expand the concept of optics-free functional imaging, all without the need for biological markers, fluorescent proteins or genetic manipulation of cellular networks. With Accura-3D, we created a first-in-class solution that can directly access the complex cytoarchitecture of 3D tissues and brain organoids. The biggest challenges are taking the vast amounts of data coming from cells and processing them without losing critical information in real-time. Accura-3D does a lot of the heavy lifting with on-chip processing, signal amplification and noise filtering, which basically makes the chip itself intelligent. This integrated intelligence is a remarkable distinction from other instruments in the preclinical space and helps researchers to record or even actively stimulate biosignals at unprecedented depths. There is just no comparable solution out there."

Upcoming E-conference

Other Related stories

Startup

Digitization